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The barrier to rotation about C-C single bonds and any associated rotamer 

preference are important in both synthetic and mechanistic chemical studies. 

Although there is an ever-increasing amount of information regarding rotation 

about C-C bonds,2 there still remains a dearth of data regarding the conforma- 

tional dynamics of simple acyclic hydrocarbons. 
2a 

Examination of the 1~ DNMR spectra of a number of acyclic hydrocarbons 

Q-2; Table) revealed unequivocal changes in the spectra attributable to a 

slowing of rotation about C-c bonds (Figure). In several cases, the resouances 

influenced by slowing of rotation were superimposed on nonexchanging peaks. In 

these cases, a total line shape analysis was performed under slow exchange 

conditions to ascertain the position and intensity of superimposed non- 

exchanging resonances. The nouexchanging peaks were then added to the cal-, 

culated total line shape under conditions of intermediate exchsnge and a free 

energy of activation (AGf) for rotation calculated (Table). Although there may 

be other factors which contribute to the potential barrier for C-c rotation, 3 

perusal of the Table reveals a clear dependence on steric bulk however 

defined.2C The very similar barriers in i ,.J,s,z, and 2 suggest comparable 

Me/&,-We/Et, Me/i-Pr, and C6H5/Me vicinal eclipsed nonbonded repulsions. The 

barriers for 2 and? as compared to ;t andi respectively indicate .that phenyl 
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slow exchange chemical shifts 
of temperature-dependent 
resonances , HZ ( relat ive 
intensity)’ 

compound solvent b 

CH$HCl 10.7t 0.5 
(- 88’) 

CHaCHCl 8.3 t 0.5 
(-102’) 

60% cs2 8.0 t 0.2 
407. CI-!$.ZHCl k113e) 

rotamer 

44(-0.5);41(-10) 

g& 
Me Me 

-64% 

87(O.r8,; 7OtO.82) 

!56(1D); 45(0.5) CBrF3 6.910.3 
w34*1 

61(-l); 33(d) 

JMc,H.6* 
CBrFs 6.710.5 

k134’) 

CBrFs --6 complex changes 
from -140’ to -159’ 

53(-1);44b0.5) CBrFs 

55(T.O),44(0.5) CBrFx 

56(0.5);52(100) CBrFa 

6.3 ? 0.5 
(-149’) 

. 6.7 V. 

6.3 r0.5 
(-146’) 

4.9 t 0.5 
(-181’) 
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is effectively about the same size or smaller than Me in.this conformational 

context. 2c The barriers to tert-butyl rotation in i, 2, and B are comparable 

to those in tert-butylcycloalkanes (6-8 kcal/mole).4 

The diamagnetic anisotropy experienced by the slowly rotating tert-butyl 

in 2, 2, and +8 is strictly analogous to that in the tert-butylcycloalkanes,4 

i.e., a Me gauche to alkyl and H is downfield from a Me gauche to two alkyl 

groups. This trend is nicely illustrated in the slow exchange tert-butyl peak 

intensities reversal in i and 2. These chemical shift trends make possible 

assessment of the rotamer preference for 7 indicated in the Table. In 2, the 

preference is essentially statistical for the two equivalent rotamers (Table) 

indicating very little difference in enthalpy between the different rotamere. 

A similar analysis can be performed for A. In 2, the rotaplar preference was 

calculated assuming the Me resonance gauche to Ms and phenyl in the less 

Me Me’ I 
x) 

populous rotamsr (s) is superimposed on the Ms peak 

\ 

Me 

% 

of the preferred rotamar (Table). Although the lines 

Mel) 

are broad at low temperature,only two AB-distorted 

doublets of equal intensity are observed for the 

%! Me2CH resonance in 2 indicating a strong preference 

for the indicated rotamer (Table). Thus, it appears that phenyl has a greater 

effective size than methyl as measured by ground state gauche-butane type 

repulsions in 2 and 2. 
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